
Deadlock:

Overview
A deadlock in OS is a situation in which more than one process is blocked because it is
holding a resource and also requires some resource that is acquired by some other
process. The four necessary conditions for a deadlock situation to occur are mutual
exclusion, hold and wait, no preemption and circular set. We can prevent a deadlock by
preventing any one of these conditions. There are different ways to detect and recover a
system from deadlock.

Scope of the Article
● This article defines and explains a deadlock and the necessary conditions for a

deadlock situation to occur.
● The article reflects on the various methods of handling deadlocks.
● The article lists the key differences between a deadlock and starvation.
● The article lists the advantages and disadvantages of a deadlock.

What is Deadlock in OS?
All the processes in a system require some resources such as central processing
unit(CPU), file storage, input/output devices, etc to execute it. Once the execution is
finished, the process releases the resource it was holding. However, when many
processes run on a system they also compete for these resources they require for
execution. This may arise a deadlock situation.

A deadlock is a situation in which more than one process is blocked because it is
holding a resource and also requires some resource that is acquired by some other
process. Therefore, none of the processes gets executed.

Neccessary Conditions for Deadlock
The four necessary conditions for a deadlock to arise are as follows.

● Mutual Exclusion: Only one process can use a resource at any given time i.e. the
resources are non-sharable.

● Hold and wait: A process is holding at least one resource at a time and is waiting
to acquire other resources held by some other process.



● No preemption: The resource can be released by a process voluntarily i.e. after
execution of the process.

● Circular Wait: A set of processes are waiting for each other in a circular fashion.
For example, lets say there are a set of processes {

In the above figure, there are two processes and two resources. Process 1 holds
"Resource 1" and needs "Resource 2" while Process 2 holds "Resource 2" and requires
"Resource 1". This creates a situation of deadlock because none of the two processes
can be executed. Since the resources are non-shareable they can only be used by one
process at a time(Mutual Exclusion). Each process is holding a resource and waiting for
the other process the release the resource it requires. None of the two processes
releases their resources before their execution and this creates a circular wait.
Therefore, all four conditions are satisfied.

Methods of Handling Deadlocks in Operating System
The first two methods are used to ensure the system never enters a deadlock.

Deadlock Prevention
This is done by restraining the ways a request can be made. Since deadlock occurs
when all the above four conditions are met, we try to prevent any one of them, thus
preventing a deadlock.

Deadlock Avoidance
When a process requests a resource, the deadlock avoidance algorithm examines the
resource-allocation state. If allocating that resource sends the system into an unsafe
state, the request is not granted.

Therefore, it requires additional information such as how many resources of each type
is required by a process. If the system enters into an unsafe state, it has to take a step
back to avoid deadlock.

Deadlock Detection and Recovery
We let the system fall into a deadlock and if it happens, we detect it using a detection
algorithm and try to recover.



Some ways of recovery are as follows.

● Aborting all the deadlocked processes.
● Abort one process at a time until the system recovers from the deadlock.
● Resource Preemption: Resources are taken one by one from a process and

assigned to higher priority processes until the deadlock is resolved.

Deadlock Ignorance
In the method, the system assumes that deadlock never occurs. Since the problem of
deadlock situation is not frequent, some systems simply ignore it. Operating systems
such as UNIX and Windows follow this approach. However, if a deadlock occurs we can
reboot our system and the deadlock is resolved automatically.

CONCLUSION

● A deadlock in OS is a situation in which more than one process is blocked
because it is holding a resource and also requires some resource that is acquired
by some other process.

● The four necessary conditions for a deadlock situation are mutual exclusion, no
preemption, hold and wait and circular set.

● There are four methods of handling deadlocks - deadlock avoidance, deadlock
prevention, deadline detection and recovery and deadlock ignorance.

● We can prevent a deadlock by preventing any one of the four necessary
conditions for a deadlock.

● There are different ways of detecting and recovering a deadlock in a system.
● A starvation is a situation in which lower priority processes are postponed

indefinitely while higher priority processes are executed.
● The advantages of deadlock handling methods are that no preemption is needed

and it is good for activities that require a single burst of activity.
● The disadvantages of deadlock handling methods are it delays process initiation

and preemptions are frequently encountered in it.



BANKER’S ALGO

Bankers Algorithm in OS

Challenge Inside! : Find out where you stand! Try quiz, solve problems & win rewards!

Go to Challenge

Overview
Bankers algorithm in Operating System is used to avoid deadlock and for resource
allocation safely to each process in the system. As the name suggests, it is mainly used
in the banking system to check whether the loan can be sanctioned to a person or not.
Bankers algorithm in OS is a combination of two main algorithms: safety algorithm (to
check whether the system is in a safe state or not) and resource request algorithm (to
check how the system behaves when a process makes a resource request).

Scope of the Article
● In this article, we will study the implementation of the Bankers algorithm in OS

along with its examples, advantages, and disadvantages.
● We will also take a look at the safety algorithm and resource request algorithm in

OS.

What is the Bankers Algorithm in OS?
A process in OS can request a resource, can use the resource, and can also release it.
There comes a situation of deadlock in OS in which a set of processes is blocked
because it is holding a resource and also requires some other resources at the same
time that are being acquired by other processes. So to avoid such a situation of
deadlock, we have the Bankers algorithm in Operating System.

https://www.scaler.com/topics/bankers-algorithm-in-os/#topic-challenge-container-382335
https://www.scaler.com/topics/operating-system/deadlock-in-os/


Bankers algorithm in OS is a deadlock avoidance algorithm and it is also used to safely
allocate the resources to each process within the system. It was designed by Edsger
Dijkstra. As the name suggests, Bankers algorithm in OS is mostly used in the banking
systems to identify whether a loan should be given to a person or not.

To understand this algorithm in detail, let us discuss a real-world scenario. Supposing
there are 'n' account holders in a particular bank and the total sum of their money is 'x'.
Now, if a person applies for a loan (let's say for buying a car), then the loan amount
subtracted from the total amount available in the bank gives us the remaining amount
and that should be greater than 'x', then only the loan will be sanctioned by the bank. It is
done keeping in mind about the worst case where all the account holders come to
withdraw their money from the bank at the same time. Thus, the bank always remains in
a safe state.

Bankers algorithm in OS works similarly. Each process within the system must provide
all the important necessary details to the operating system like upcoming processes,
requests for the resources, delays, etc. Based on these details, OS decides whether to
execute the process or keep it in the waiting state to avoid deadlocks in the system.
Thus, Bankers algorithm is sometimes also known as the Deadlock Detection
Algorithm.



UNIT 4
MEMORY MANAGEMENT

Swapping
Swapping is a mechanism in which a process can be swapped temporarily out of

main memory (or move) to secondary storage (disk) and make that memory

available to other processes. At some later time, the system swaps back the

process from the secondary storage to main memory.

Though performance is usually affected by swapping process but it helps in running

multiple and big processes in parallel and that's the reason Swapping is also known as

a technique for memory compaction.

The total time taken by swapping process includes the time it takes to move the entire

process to a secondary disk and then to copy the process back to memory, as well as

the time the process takes to regain main memory.



What is Contiguous Memory Allocation in Operating Systems?
Contiguous memory allocation refers to a memory management technique in which whenever there
occurs a request by a user process for the memory, one of the sections of the contiguous memory
block would be given to that process, in accordance with its requirement.



As you can see in the illustration shown above, three files are there in the directory. The starting
block, along with the length of each file, is mentioned in the table. Thus, we can see in this table that
all the contiguous blocks get assigned to every file as per their need.

Types of Partitions
Contiguous memory allocation can be achieved when we divide the memory into the following types
of partitions:

1. Fixed-Sized Partitions
Another name for this is static partitioning. In this case, the system gets divided into multiple
fixed-sized partitions. In this type of scheme, every partition may consist of exactly one process.
This very process limits the extent at which multiprogramming would occur, since the total number
of partitions decides the total number of processes. Read more on fixed-sized partitions here.

2. Variable-Sized Partitions
Dynamic partitioning is another name for this. The scheme allocation in this type of partition is done
dynamically. Here, the size of every partition isn’t declared initially. Only once we know the process
size, will we know the size of the partitions. But in this case, the size of the process and the partition
is equal; thus, it helps in preventing internal fragmentation.

On the other hand, when a process is smaller than its partition, some size of the partition gets
wasted (internal fragmentation). It occurs in static partitioning, and dynamic partitioning solves this
issue. Read more on dynamic partitions here.

Pros of Contiguous Memory Allocation

https://byjus.com/gate/page-table-entry-notes/
https://byjus.com/gate/dynamic-partitioning-in-operating-system-notes/


1. It supports a user’s random access to files.

2. The user gets excellent read performance.

3. It is fairly simple to implement.

Cons of Contiguous Memory Allocation
1. Having a file grow might be somewhat difficult.

2. The disk may become fragmented

Paging
Paging is used to bring processes of large size than memory into memory for execution

Paging is a memory management technique in which process address space is broken

into blocks of the same size called pages (size is power of 2, between 512 bytes and

8192 bytes). The size of the process is measured in the number of pages.

Similarly, main memory is divided into small fixed-sized blocks of (physical) memory

called frames and the size of a frame is kept the same as that of a page to have

optimum utilization of the main memory and to avoid external fragmentation.

Address Translation

Page address is called logical address and represented by page number and the offset.

Logical Address = Page number + page offset

Frame address is called physical address and represented by a frame number and the

offset.



Physical Address = Frame number + page offset

A data structure called page map table is used to keep track of the relation between a

page of a process to a frame in physical memory.

● Paging is simple to implement and assumed as an efficient memory

management technique.

● Due to equal size of the pages and frames, swapping becomes very easy.

● Page table requires extra memory space, so may not be good for a system

having small RAM

TWO LEVEL PAGING

When the size of the page table is less than the size of one Frame then we need

not worry because we can directly put the page table in a frame of the main



memory. Thus we can directly access the page table. But if the size of the page

table is larger than the size of the Frame. Then the page table in return is to be

divided into several pages and these pages of the page table are to be stored in

the main memory. Thus, an Outer Page Table comes into the picture. This Outer

Page Table would contain the address of the Frames which contain the pages of

the Inner Page Table (i.e., Page Table one page) in the main memory. The size

of this Outer Page is also calculated in the same way as explained above and

was used to calculate the size of the inner page Table. Now if the size of the

inner page Table is Less Than or Equal to the size of a Frame then we can stop

here as we are able to keep the outermost table in a Single frame. This is called

Two Level Paging. Example: Consider Given,

Physical Address Space = 2(44) B

Virtual Address Space = 2(32) B

Page Entry = 4B

Page Size = 4KB

So, No.of Frame = 2(32)

No. of Pages Of the Process = 2(20)

https://www.geeksforgeeks.org/page-table-entries-in-page-table/


Page Table 1 size =2(20) * 4 B= 4 MB

As it is larger than 4KB (Frame size). Thus, this Page Table has to be converted

to pages. No. of pages of Page Table 2 (Outer Page Table)

= 2(22)*2(-12)= 2(10) pages

So, the size of the Outer Page Table

= 2(10) * 4B = 4KB

Thus here our Outer Page Table (Page Table 2) can be stored in one frame.

Therefore, we can stop here. This is Two-level Paging because here we got

2-page tables.



But If still the size of the page table is more than the Frame Size then we have to

continue till we reach a stage where the size of Outer Most Table is less than the

Frame Size. This Concept is called MultiLevel Paging. Our Target should be to

keep the outermost Page Table in a single Frame.



= 2(22)*2(-12)= 2(10) pages

So, the size of the Outer Page Table

= 2(10) * 4B = 4KB

Thus here our Outer Page Table (Page Table 2) can be stored in one frame.
Therefore, we can stop here. This is Two-level Paging because here we got
2-page tables.

But If still the size of the page table is more than the Frame Size then we have to
continue till we reach a stage where the size of Outer Most Table is less than the
Frame Size. This Concept is called MultiLevel Paging. Our Target should be to
keep the outermost Page Table in a single Frame.



VIRTUAL MEMORY

A computer can address more memory than the amount physically installed on the

system. This extra memory is actually called virtual memory and it is a section of a

hard disk that's set up to emulate the computer's RAM.

The main visible advantage of this scheme is that programs can be larger than physical

memory. Virtual memory serves two purposes. First, it allows us to extend the use of

physical memory by using disk. Second, it allows us to have memory protection,

because each virtual address is translated to a physical address.

Following are the situations, when entire program is not required to be loaded fully in

main memory.

● User written error handling routines are used only when an error occurred

in the data or computation.

● Certain options and features of a program may be used rarely.

● Many tables are assigned a fixed amount of address space even though

only a small amount of the table is actually used.

● The ability to execute a program that is only partially in memory would

counter many benefits.

● Less number of I/O would be needed to load or swap each user program

into memory.

● A program would no longer be constrained by the amount of physical

memory that is available.



● Each user program could take less physical memory, more programs could

be run the same time, with a corresponding increase in CPU utilization

and throughput.

Modern microprocessors intended for general-purpose use, a memory management

unit, or MMU, is built into the hardware. The MMU's job is to translate virtual

addresses into physical addresses. A basic example is given below −



Virtual memory is commonly implemented by demand paging. It can also be

implemented in a segmentation system. Demand segmentation can also be used to

provide virtual memory.

Demand Paging
A demand paging system is quite similar to a paging system with swapping where

processes reside in secondary memory and pages are loaded only on demand, not in

advance. When a context switch occurs, the operating system does not copy any of the

old program’s pages out to the disk or any of the new program’s pages into the main

memory Instead, it just begins executing the new program after loading the first page

and fetches that program’s pages as they are referenced.

While executing a program, if the program references a page which is not available in

the main memory because it was swapped out a little ago, the processor treats this

invalid memory reference as a page fault and transfers control from the program to the

operating system to demand the page back into the memory.

Advantages

Following are the advantages of Demand Paging −

● Large virtual memory.

● More efficient use of memory.

● There is no limit on degree of multiprogramming.

Disadvantages



● Number of tables and the amount of processor overhead for handling

page interrupts are greater than in the case of the simple paged

management techniques.

Page Replacement Algorithm
Page replacement algorithms are the techniques using which an Operating System

decides which memory pages to swap out, write to disk when a page of memory needs

to be allocated. Paging happens whenever a page fault occurs and a free page cannot

be used for allocation purpose accounting to reason that pages are not available or the

number of free pages is lower than required pages.

When the page that was selected for replacement and was paged out, is referenced

again, it has to read in from disk, and this requires for I/O completion. This process

determines the quality of the page replacement algorithm: the lesser the time waiting

for page-ins, the better is the algorithm.

A page replacement algorithm looks at the limited information about accessing the

pages provided by hardware, and tries to select which pages should be replaced to

minimize the total number of page misses, while balancing it with the costs of primary

storage and processor time of the algorithm itself. There are many different page

replacement algorithms. We evaluate an algorithm by running it on a particular string

of memory reference and computing the number of page faults,

Reference String



The string of memory references is called reference string. Reference strings are

generated artificially or by tracing a given system and recording the address of each

memory reference. The latter choice produces a large number of data, where we note

two things.

● For a given page size, we need to consider only the page number, not the

entire address.

● If we have a reference to a page p, then any immediately following

references to page p will never cause a page fault. Page p will be in

memory after the first reference; the immediately following references

will not fault.

● For example, consider the following sequence of addresses −

123,215,600,1234,76,96

● If page size is 100, then the reference string is 1,2,6,12,0,0

First In First Out (FIFO) algorithm
● Oldest page in main memory is the one which will be selected for

replacement.

● Easy to implement, keep a list, replace pages from the tail and add new

pages at the head.



Optimal Page algorithm
● An optimal page-replacement algorithm has the lowest page-fault rate of

all algorithms. An optimal page-replacement algorithm exists, and has

been called OPT or MIN.

● Replace the page that will not be used for the longest period of time. Use

the time when a page is to be used.



Least Recently Used (LRU) algorithm
● Page which has not been used for the longest time in main memory is the

one which will be selected for replacement.

● Easy to implement, keep a list, replace pages by looking back into time.



Page Buffering algorithm
● To get a process start quickly, keep a pool of free frames.

● On page fault, select a page to be replaced.

● Write the new page in the frame of free pool, mark the page table and

restart the process.

● Now write the dirty page out of disk and place the frame holding replaced

page in free pool.

Least frequently Used(LFU) algorithm
● The page with the smallest count is the one which will be selected for

replacement.

● This algorithm suffers from the situation in which a page is used heavily

during the initial phase of a process, but then is never used again.



Most frequently Used(MFU) algorithm
● This algorithm is based on the argument that the page with the smallest

count was probably just brought in and has yet to be used.

Thrashing

● Page fault: We know every program is divided into some pages. A page fault

occurs when a program attempts to access data or code in its address space but

is not currently located in the system RAM.

● Swapping: Whenever a page fault happens, the operating system will try to fetch

that page from secondary memory and try to swap it with one of the pages in

RAM. This process is called swapping.

Thrashing is when the page fault and swapping happens very frequently at a higher rate,

and then the operating system has to spend more time swapping these pages. This

state in the operating system is known as thrashing. Because of thrashing, the CPU

utilization is going to be reduced or negligible.

The basic concept involved is that if a process is allocated too few frames, then there

will be too many and too frequent page faults. As a result, no valuable work would be

done by the CPU, and the CPU utilization would fall drastically.

The long-term scheduler would then try to improve the CPU utilization by loading some

more processes into the memory, thereby increasing the degree of multiprogramming.

Unfortunately, this would result in a further decrease in the CPU utilization, triggering a



chained reaction of higher page faults followed by an increase in the degree of

multiprogramming, called thrashin

What is Segmentation?
Segmentation is another memory management technique, just like Paging, that

divides the addressable memory in distinct segments. However, there is a difference

between a Page and a Segment. While Paging divides the memory into blocks of

fixed size, Segmentation divides the memory into segments of variable sizes that can

grow or shrink as per requirement. A computer that uses segmentation as the

memory management technique would have a logical address space that can be

viewed as multiple segments.

Advantages of Segmentation



Segmentation supports user's view of memory by dividing a process into modules

that provide better visualization. There is no internal fragmentation in Segmentation.

A Segment Table keeps track of all the segments, which occupies less space as

compared to an equivalent Paging Table that keeps a record of all the pages.

Disadvantages of Segmentation
Segmentation is an expensive technique because it involves a lot of overhead for

maintaining a separate segment table for each process. Since the segments are of

unequal length, they are not suitable for swapping. Segmentation leads to external

fragmentation as the available memory space is broken down into smaller chunks as

the processes are being loaded and removed.

Difference between Demand Paging and Segmentation
The following table highlights the major differences between Demand Paging and

Segmentation −

Key Demand Paging Segmentation

Definition Paging is a memory

management technique in

which process address

space is broken into blocks

of the same size called

"pages".

Segmentation is a memory

management technique in which

each job is divided into several

segments of different sizes, one for

each module that contains pieces

that perform related functions.



Block Size The block size is fixed in

case of Demand Paging.

In Segmentation, the process

address space is broken in varying

sized blocks which are called as

"sections". So block size is not fixed

in case of Segmentation.

Block size

dependency

In Demand Paging, the size

of blocks is dependent on

system memory and gets

assigned accordingly.

In Segmentation, the size is not

dependent on system memory and is

all up to user's choice that of what

size blocks are needed.

Performance In context of performance,

Demand Paging is faster as

compared to Segmentation.

Segmentation is slower in speed as

compared to Pagination.

Data Load In case of Demand Paging,

pages get loaded in the

main memory at runtime

when the user demands it.

In case of Segmentation, all the

sections get loaded at the time of

compilation.

Data Record In Demand Paging, there is a

Page map table that

In case of Segmentation, there is a

Segment map table that manages



manages the record of

pages in memory.

every segment address in the

memory.

Conclusion
The most important point that you should note here is that Paging is a faster

technique than Segmentation. In Paging, the pages are of fixed size and it is decided

by the hardware. In contrast, the size of segments in Segmentation can vary as per the

user's requirements


